Brain implants and wearables let paralyzed people move again
In 2015, a group of neuroscientists and engineers assembled to watch a man play the video game Guitar Hero. He held the simplified guitar interface gingerly, using the fingers of his right hand to press down on the fret buttons and his left hand to hit the strum bar. What made this mundane bit of game play so extraordinary was the fact that the man had been paralyzed from the chest down for more than three years, without any use of his hands. Every time he moved his fingers to play a note, he was playing a song of restored autonomy.
His movements didn’t rely on the damaged spinal cord inside his body. Instead, he used a technology that we call a neural bypass to turn his intentions into actions. Essentially, it routes signals around the damaged spinal cord, potentially restoring both movement and sensation. First, a brain implant picked up neural signals in his motor cortex, which were then rerouted to a computer running machine-learning algorithms that deciphered those signals; finally, electrodes wrapped around his forearm conveyed the instructions to his muscles. He used, essentially, a type of artificial nervous system. You can read more about this technology HERE.